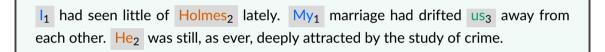
Learning to Ignore: Long Document Coreference with Bounded Memory Neural Networks

Shubham Toshniwal Sam Wiseman Allyson Ettinger Karen Livescu Kevin Gimpel



github.com/shtoshni92/long-doc-coref

Coreference Resolution

I had seen little of Holmes lately. My marriage had drifted us away from each other. He was still, as ever, deeply attracted by the study of crime.

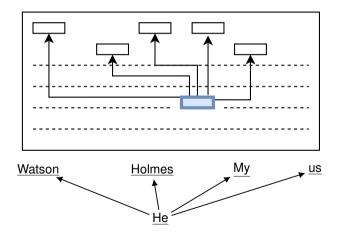
Coreference Resolution

Coreference Resolution

 I_1 had seen little of Holmes₂ lately. My₁ marriage had drifted us_3 away from each other. He₂ was still, as ever, deeply attracted by the study of crime.

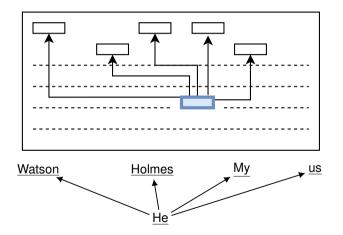
- 1 \longrightarrow John Watson
- $2 \longrightarrow$ Sherlock Holmes
- $3 \longrightarrow Watson + Holmes$

Coreference Resolution Models


Mention Ranking Models

	🗖		
<u>Watson</u>	Holmes	Му	<u>us</u>

He


Lee et al 2018, Joshi et al 2019, Wu et al 2020

Mention Ranking Models

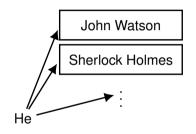
Lee et al 2018, Joshi et al 2019, Wu et al 2020

Mention Ranking Models

Impractical for long documents! Quadratic runtime!

Entity-Mention Models

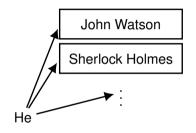
John Watson


Sherlock Holmes

÷

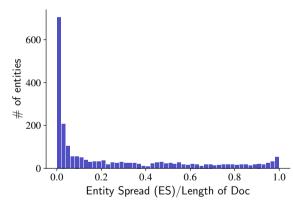
Webster et al 2014, Xia et al 2020

Entities


Entity-Mention Models

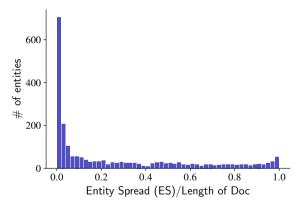
Webster et al 2014, Xia et al 2020

Entities


Entity-Mention Models

Number of entities can be quite large!

Entities


Most Entities Are Transient

LitBank Entity Spread Histogram

Most entities have a small "spread": # of tokens between first and last mention.

Most Entities Are Transient

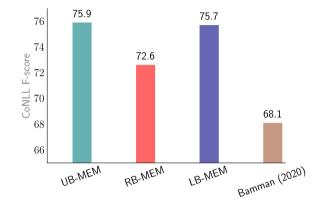
LitBank Entity Spread Histogram

Most entities have a small "spread": # of tokens between first and last mention.

Not necessary to keep all entities in memory all the time!

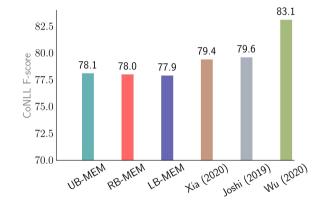
Bounded Memory Model: Ignore and Evict

- Track a small, bounded number of entities.
- When the model's memory is full, and a mention corresponding to a new (currently untracked) entity comes next, then :
 - Evict: Remove an entity already being tracked, and start tracking this new entity.
 - Ignore: Ignore the mention.
- Learns to ignore and evict by mimicking oracle actions.

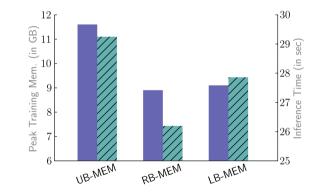

Model Variants

We compare the following model variants:

- Unbounded Memory (UB-MEM)
- Rule-based Bounded Memory (RB-MEM): Uses LRU heuristic to select eviction candidate.
- Learned Bounded Memory (LB-MEM): Proposed model which learns to ignore/evict entities.


For bounded memory models, we only show results with memory capacity of 20 entities.

LitBank Results



State of the art results for LitBank!

OntoNotes Results

Memory and Inference Time Comparison

Conclusion

- Proposed a memory model that tracks a small, bounded number of entities.
- The model is competitive with prior work on OntoNotes and LitBank.
- The model guarantees linear runtime in length of document, and reduces memory usage during training.

Bibliography

- David Bamman, Olivia Lewke, and Anya Mansoor. 2020. An Annotated Dataset of Coreference in English Literature. In LREC.
- Mandar Joshi, Omer Levy, Luke Zettlemoyer, and Daniel Weld. 2019. BERT for Coreference Resolution: Baselines and Analysis. In EMNLP.
- Kellie Webster and James R. Curran. 2014. Limited memory incremental coreference resolution. In COLING.
- Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Jiwei Li. 2020. Coreference Resolution as Query-based Span Prediction. In ACL.
- Patrick Xia, João Sedoc, and Benjamin Van Durme. 2020. Revisiting Memory-Efficient Incremental Coreference Resolution. In EMNLP.