Learning Chess Blindfolded: Evaluating Language Models for State Tracking

Shubham Toshniwal Research Scientist, FAIR NYC

Entity Tracking in Chess

Test out ideas for entity tracking via language models in chess

Why Chess? Simple, closed domain

Entities: Chess pieces Entity State: Piece Location

Learning Chess Blindfolded

Learning Chess Blindfolded

^{E1_{F3} d7_{d5} ^{E2}83}

d2d4 d7d5 g1f3

elek eles elt3

Algebraic Notation

Position Naming

Algebraic Notation

Translation of moves

Translation of moves

e2e4 (Pawn) moved from e2 to e4

Translation of moves

e2e4 (Pawn) moved from e2 to e4 e7e5 (Pawn) moved from e7 to e5

Translation of moves

- e2e4 (Pawn) moved from e2 to e4 e7e5 (Pawn) moved from e7 to e5
- g1f3 (Knight) moved from g1 to f3 $\,$

Translation of moves

- e2e4 (Pawn) moved from e2 to e4e7e5 (Pawn) moved from e7 to e5g1f3 (Knight) moved from g1 to f3
- :

:

Chess Notation allows for probing for entity state via prompting!

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 f1??

Chess Notation allows for probing for entity state via prompting!

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 <u>f1g1</u>

Chess Notation allows for probing for entity state via prompting!

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 f1g2

Chess Notation allows for probing for entity state via prompting!

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 f1b5

Can a language model benefit from the knowledge of piece types?

Can a language model benefit from the knowledge of piece types?

Randomly introduce piece types in text sequences during training

Vanilla Training e2e4 e7e5 g1f3 b8c6 d2d4 h7h6

Can a language model benefit from the knowledge of piece types?

Randomly introduce piece types in text sequences during training

Vanilla Training	e2e4	e7e5	g1f3	b8c6	d2d4	h7h6
+ RAP (p=15)	e2e4	e7e5	Ng1f3	b8c6	6 d2d4	h7h6

Can a language model benefit from the knowledge of piece types?

Randomly introduce piece types in text sequences during training

Vanilla Training	e2e4 e7e5 g1f3 b8c6 d2d4 h7h6
+ RAP (p=15)	e2e4 e7e5 <u>N</u> g1f3 b8c6 d2d4 h7h6
+ RAP (p=50)	<u>P</u> e2e4 e7e5 <u>N</u> g1f3 b8c6 d2d4 <u>P</u> h7h6
+ RAP (p=100)	Pe2e4 Pe7e5 Ng1f3 Nb8c6 Pd2d4 Ph7h6

Can a language model benefit from the knowledge of piece types?

Randomly introduce piece types in text sequences during training

Vanilla Training	e2e4 e7e5 g1f3 b8c6 d2d4 h7h6
+ RAP (p=15)	e2e4 e7e5 <u>N</u> g1f3 b8c6 d2d4 h7h6
+ RAP (p=50)	<u>P</u> e2e4 e7e5 <u>N</u> g1f3 b8c6 d2d4 <u>P</u> h7h6
+ RAP (p=100)	$\underline{P}e2e4 \ \underline{P}e7e5 \ \underline{N}g1f3 \ \underline{N}b8c6 \ \underline{P}d2d4 \ \underline{P}h7h6$
Inference	e2e4 e7e5 g1f3 b8c6 d2d4 h7h6

Entity Tracking Task: Starting Square

Training with RAP also allows for directly probing for piece location

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 B??

Entity Tracking Task: Starting Square

Training with RAP also allows for directly probing for piece location

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 Bf1

Entity Tracking Task: Starting Square

Training with RAP also allows for directly probing for piece location

e2e4 e7e5 g1f3 b8c6 d2d4 h7h6 Be1

Entity Tracking Results

Entity Tracking Results

Error Categories

Automated error analysis possible for domains such as chess

Error categories:

Syntax

Path Obstruction

Pseudo Legal

Error Category: Syntax

Queen trying to move like a knight

Error Category: Path Obstruction

Bishop eager to retreat

Error Category: Pseudo Legal

Protect the king first

Language Modeling Results

Proposed chess as a testbed for entity tracking in language models

Data augmentation using RAP improves both entity tracking and language modeling results for low data settings