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Conventional ASR Systems

• Traditional automatic speech recognition (ASR) systems are
modular.

• Different components of the system are trained separately.
• Components correspond to different levels of representation -
frame-level states, phones, and words etc.
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End-to-end ASR Models

• Neural end-to-end models for ASR have become viable and
popular.

• End-to-end models are appealing because:
• Conceptually simple; all model parameters contribute to the same
final goal.

• Impressive results in ASR (Zweig et al. 2016) as well as other
domains (Vinyals et al. 2015, Huang et al. 2016).
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End-to-end Models: Cons

However, end-to-end models have some drawbacks as well:

• Optimization can be challenging.
• Ignore potentially useful domain-specific information about
intermediate representations, as well as existing intermediate
levels of supervision.

• Hard to interpret intermediate learned representations, thus
harder to debug.
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Motivation

• Analysis of some deep end-to-end models found that different
layers tend to specialize for different sub-tasks (Mohamed et al.
2012, Zeiler et al. 2014).

• Lower layers focus on lower-level representation and higher
ones on higher-level representation.
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Motivation

• Can we encourage such intermediate representation learning
more explicitly ?

• Multitask learning: Combine final task loss (speech recognition)
with losses corresponding to lower-level tasks (such as phonetic
recognition) applied on lower layers (Søgaard et al. 2016).
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Encoder-Decoder Model for speech recognition
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• We use the attention-enabled encoder-decoder variant
proposed by Chan et al. 2015.

• Speech encoder: A pyramidal bidirectional LSTM that:
(i) Reads in acoustic features x = (x1, . . . , xT)
(ii) Outputs a sequence of high-level features (hidden states).

• Character decoder: Attends to high-level features generated by
encoder and outputs y = (y1, . . . , yK).
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Adding Phoneme Supervision
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• Phoneme-level supervision obtained using pronunciation
dictionary.

• Experiment with two types of sequence loss:
(a) Phoneme Decoder Loss (LDecp ),
(b) CTC-loss (LCTCp )

• Training Loss L is given by: L = 1
2 (Lc + Lp).
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Adding frame-level Supervision
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• We also experiment with frame-level state supervision.
• Training Loss L is then: L = 1

3 (Lc + Lp + Ls).
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Dataset & Model Details

Dataset:

• Switchboard corpus - 300 hrs of conversational speech data.
• Standard training/development/test split is used.

Model:

• Speech Encoder: 4-layer pyramidal bidirectional LSTM.
• Character Decoder: 1-layer unidirectional LSTM.
• Both have 256 hidden units.

9



Dev Results

Table 1: Character error rate (CER) and word error rate (WER) results on
development data.

Model Dev CER (in ҍ) Dev WER (in ҍ)
Enc-Dec (baseline) 14.6 26.0

Enc-Dec + PhoneCTC-3 14.0 25.3
Enc-Dec + PhoneDec-3 13.8 24.9
Enc-Dec + PhoneDec-4 14.5 25.9
Enc-Dec + State-2 13.6 24.1
Enc-Dec + PhoneDec-3 + State-2 13.4 24.1
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Test Results

Table 2: WER (%) on test data for different end-to-end models.

Model SWB CHE Full
Our models
Enc-Dec (baseline) 25.0 42.4 33.7
Enc-Dec + PhoneDec-3 + State-2 23.1 40.8 32.0

Lu et al. 2016
Enc-Dec 27.3 48.2 37.8
Enc-Dec (word) + 3-gram 25.8 46.0 36.0

Maas et al. 2015
CTC 38.0 56.1 47.1

Zweig et al. 2016
Iterated CTC 24.7 37.1 —
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How does Multitask Learning help ?

Figure 1: Log-loss of training data (only Lc) for different model variations.

12



How does Multitask Learning help ?

Figure 1: Log-loss of training data (only Lc) for different model variations.

12



How does Multitask Learning help ?

Figure 1: Log-loss of training data (only Lc) for different model variations.

12



Conclusion & Future Work

• Multitask learning is great!

• Using lower level supervision at lower-levels is the key to our
gains.

• More generally, our ASR model can be extended to incorporate
higher-level supervision, such as semantic/syntactic labels.

• The idea of incorporating different types of supervision at
different levels is of broad interest (Hashimoto et al. 2016, Weiss
et al. 2017, Rao et al. 2017).
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Questions?
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