Multitask Learning with Low-Level Auxiliary Tasks

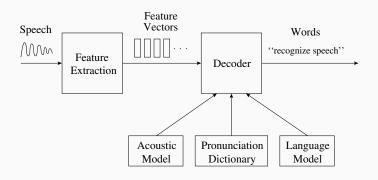
for Speech Recognition

Shubham Toshniwal, Hao Tang, Liang Lu, Karen Livescu

Toyota Technological Institute at Chicago

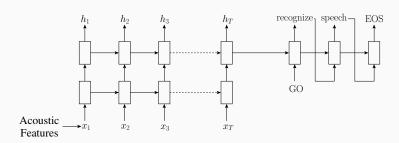
CONVENTIONAL ASR SYSTEMS

- Traditional automatic speech recognition (ASR) systems are modular.
- · Different components of the system are trained separately.
- Components correspond to different levels of representation frame-level states, phones, and words etc.



END-TO-END ASR MODELS

- Neural end-to-end models for ASR have become viable and popular.
- End-to-end models are appealing because:
 - Conceptually simple; all model parameters contribute to the same final goal.
 - Impressive results in ASR (Zweig et al. 2016) as well as other domains (Vinyals et al. 2015, Huang et al. 2016).



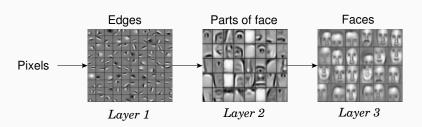
END-TO-END MODELS: CONS

However, end-to-end models have some drawbacks as well:

- · Optimization can be challenging.
- Ignore potentially useful domain-specific information about intermediate representations, as well as existing intermediate levels of supervision.
- Hard to interpret intermediate learned representations, thus harder to debug.

MOTIVATION

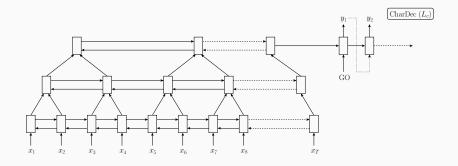
- Analysis of some deep end-to-end models found that different layers tend to specialize for different sub-tasks (Mohamed et al. 2012, Zeiler et al. 2014).
- Lower layers focus on lower-level representation and higher ones on higher-level representation.



MOTIVATION

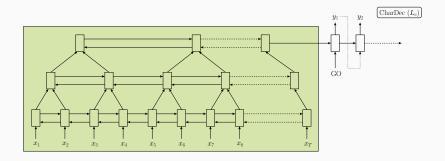
- Can we encourage such intermediate representation learning more explicitly?
- Multitask learning: Combine final task loss (speech recognition) with losses corresponding to lower-level tasks (such as phonetic recognition) applied on lower layers (Søgaard et al. 2016).

ENCODER-DECODER MODEL FOR SPEECH RECOGNITION



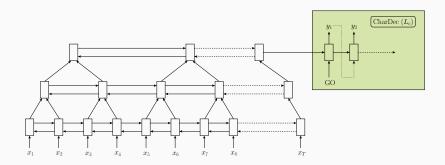
• We use the attention-enabled encoder-decoder variant proposed by Chan et al. 2015.

ENCODER-DECODER MODEL FOR SPEECH RECOGNITION

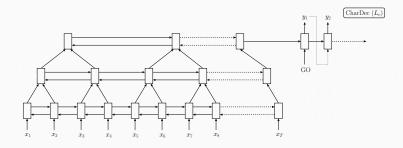


- We use the attention-enabled encoder-decoder variant proposed by Chan et al. 2015.
- · Speech encoder: A pyramidal bidirectional LSTM that:
 - (i) Reads in acoustic features $x = (x_1, \dots, x_T)$
 - (ii) Outputs a sequence of high-level features (hidden states).

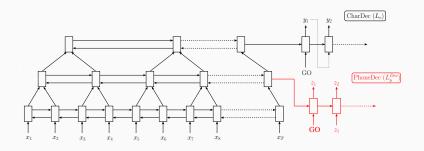
ENCODER-DECODER MODEL FOR SPEECH RECOGNITION



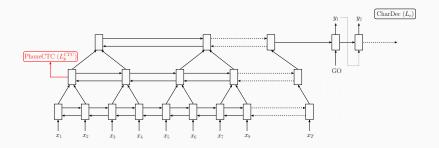
- We use the attention-enabled encoder-decoder variant proposed by Chan et al. 2015.
- · Speech encoder: A pyramidal bidirectional LSTM that:
 - (i) Reads in acoustic features $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$
 - (ii) Outputs a sequence of high-level features (hidden states).
- Character decoder: Attends to high-level features generated by encoder and outputs $\mathbf{y} = (y_1, \dots, y_K)$.



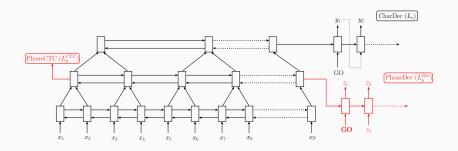
 Phoneme-level supervision obtained using pronunciation dictionary.



- Phoneme-level supervision obtained using pronunciation dictionary.
- Experiment with two types of sequence loss: (a) Phoneme Decoder Loss ($L_p^{\rm Dec}$),

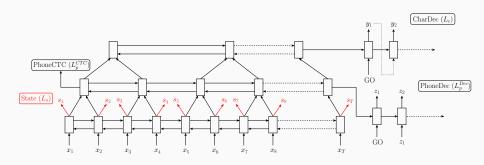


- Phoneme-level supervision obtained using pronunciation dictionary.
- Experiment with two types of sequence loss:
 - (a) Phoneme Decoder Loss (L_D^{Dec}),
 - (b) CTC-loss (L_p^{CTC})



- Phoneme-level supervision obtained using pronunciation dictionary.
- Experiment with two types of sequence loss:
 - (a) Phoneme Decoder Loss (L_p^{Dec}),
 - (b) CTC-loss (L_p^{CTC})
- Training Loss L is given by: $L = \frac{1}{2}(L_c + L_p)$.

ADDING FRAME-LEVEL SUPERVISION



- We also experiment with frame-level state supervision.
- Training Loss L is then: $L = \frac{1}{3}(L_c + L_p + L_s)$.

DATASET & MODEL DETAILS

Dataset:

- Switchboard corpus 300 hrs of conversational speech data.
- · Standard training/development/test split is used.

Model:

- · Speech Encoder: 4-layer pyramidal bidirectional LSTM.
- · Character Decoder: 1-layer unidirectional LSTM.
- · Both have 256 hidden units.

Table 1: Character error rate (CER) and word error rate (WER) results on development data.

Model	Dev CER (in %)	
Enc-Dec (baseline)	14.6	26.0

Table 1: Character error rate (CER) and word error rate (WER) results on development data.

Model	Dev CER (in %)			
Enc-Dec (baseline)	14.6	26.0		
Enc-Dec + PhoneCTC-3	14.0	25.3		
Enc-Dec + PhoneDec-3	13.8	24.9		

Table 1: Character error rate (CER) and word error rate (WER) results on development data.

Model	Dev CER (in %)	Dev WER (in %)
Enc-Dec (baseline)	14.6	26.0
Enc-Dec + PhoneCTC-3	14.0	25.3
Enc-Dec + PhoneDec-3	13.8	24.9
Enc-Dec + PhoneDec-4	14.5	25.9

Table 1: Character error rate (CER) and word error rate (WER) results on development data.

Model	Dev CER (in %)	Dev WER (in %)
Enc-Dec (baseline)	14.6	26.0
Enc-Dec + PhoneCTC-3	14.0	25.3
Enc-Dec + PhoneDec-3	13.8	24.9
Enc-Dec + PhoneDec-4	14.5	25.9
Enc-Dec + State-2	13.6	24.1

Table 1: Character error rate (CER) and word error rate (WER) results on development data.

Model	Dev CER (in %)	Dev WER (in %)
Enc-Dec (baseline)	14.6	26.0
Enc-Dec + PhoneCTC-3	14.0	25.3
Enc-Dec + PhoneDec-3	13.8	24.9
Enc-Dec + PhoneDec-4	14.5	25.9
Enc-Dec + State-2	13.6	24.1
Enc-Dec + PhoneDec-3 + State-2	13.4	24.1

Table 2: WER (%) on test data for different end-to-end models.

Model	SWB	CHE	Full
Our models			
Enc-Dec (baseline)	25.0	42.4	33.7
Enc-Dec + PhoneDec-3 + State-2	23.1	40.8	32.0

Table 2: WER (%) on test data for different end-to-end models.

Model	SWB	CHE	Full
Our models			
Enc-Dec (baseline)	25.0	42.4	33.7
Enc-Dec + PhoneDec-3 + State-2	23.1	40.8	32.0
Lu et al. 2016			
Enc-Dec	27.3	48.2	37.8
Enc-Dec (word) + 3-gram	25.8	46.0	36.0

Table 2: WER (%) on test data for different end-to-end models.

Model	SWB	CHE	Full
Our models			
Enc-Dec (baseline)	25.0	42.4	33.7
Enc-Dec + PhoneDec-3 + State-2	23.1	40.8	32.0
Lu et al. 2016			
Enc-Dec	27.3	48.2	37.8
Enc-Dec (word) + 3-gram	25.8	46.0	36.0
Maas et al. 2015			
СТС	38.0	56.1	47.1

Table 2: WER (%) on test data for different end-to-end models.

Model	SWB	CHE	Full
Our models			
Enc-Dec (baseline)	25.0	42.4	33.7
Enc-Dec + PhoneDec-3 + State-2	23.1	40.8	32.0
Lu et al. 2016			
Enc-Dec	27.3	48.2	37.8
Enc-Dec (word) + 3-gram	25.8	46.0	36.0
Maas et al. 2015			
CTC	38.0	56.1	47.1
Zweig et al. 2016			
Iterated CTC	24.7	37.1	_

HOW DOES MULTITASK LEARNING HELP?

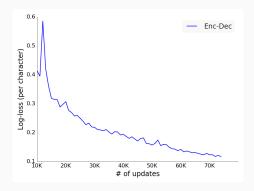


Figure 1: Log-loss of training data (only L_c) for different model variations.

HOW DOES MULTITASK LEARNING HELP?

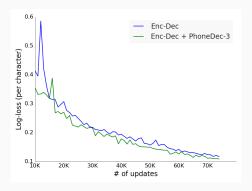


Figure 1: Log-loss of training data (only L_c) for different model variations.

HOW DOES MULTITASK LEARNING HELP?

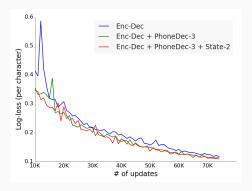


Figure 1: Log-loss of training data (only L_c) for different model variations.

· Multitask learning is great!

- · Multitask learning is great!
- Using lower level supervision at lower-levels is the key to our gains.

- · Multitask learning is great!
- Using lower level supervision at lower-levels is the key to our gains.

• More generally, our ASR model can be extended to incorporate higher-level supervision, such as semantic/syntactic labels.

- Multitask learning is great!
- Using lower level supervision at lower-levels is the key to our gains.

- More generally, our ASR model can be extended to incorporate higher-level supervision, such as semantic/syntactic labels.
- The idea of incorporating different types of supervision at different levels is of broad interest (Hashimoto et al. 2016, Weiss et al. 2017, Rao et al. 2017).

