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CONVENTIONAL ASR SYSTEMS

- Traditional automatic speech recognition (ASR) systems are
modular.

- Different components of the system are trained separately.

- Components correspond to different levels of representation -
frame-level states, phones, and words etc.

Feature
Speech Vectors Words
N\/\f\ﬂ D D D D e *‘recognize speech’’
Feature
- 7 : Decoder
Extraction
Acoustic Pronunciation Language

Model Dictionary Model




END-TO-END ASR MODELS

- Neural end-to-end models for ASR have become viable and
popular.
- End-to-end models are appealing because:
- Conceptually simple; all model parameters contribute to the same
final goal.
- Impressive results in ASR (Zweig et al. 2016) as well as other
domains (Vinyals et al. 2015, Huang et al. 2016).
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END-TO-END MODELS: CONS

However, end-to-end models have some drawbacks as well:

- Optimization can be challenging.

- lgnore potentially useful domain-specific information about
intermediate representations, as well as existing intermediate
levels of supervision.

- Hard to interpret intermediate learned representations, thus
harder to debug.



MOTIVATION

- Analysis of some deep end-to-end models found that different

layers tend to specialize for different sub-tasks (Mohamed et al.
2012, Zeiler et al. 2014).

- Lower layers focus on lower-level representation and higher
ones on higher-level representation.
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MOTIVATION

- Can we encourage such intermediate representation learning
more explicitly ?

- Multitask learning: Combine final task loss (speech recognition)
with losses corresponding to lower-level tasks (such as phonetic
recognition) applied on lower layers (Sggaard et al. 2016).



ENCODER-DECODER MODEL FOR SPEECH RECOGNITION
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- We use the attention-enabled encoder-decoder variant
proposed by Chan et al. 2015.
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- We use the attention-enabled encoder-decoder variant
proposed by Chan et al. 2015.
- Speech encoder: A pyramidal bidirectional LSTM that:
(i) Reads in acoustic features x = (xi,...,Xr)
(ii) Outputs a sequence of high-level features (hidden states).
- Character decoder: Attends to high-level features generated by
encoder and outputs y = (y1, ..., Yk)-
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ADDING PHONEME SUPERVISION
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- Phoneme-level supervision obtained using pronunciation
dictionary.

- Experiment with two types of sequence loss:
(a) Phoneme Decoder Loss (Lp®),
(b) CTC-loss (L5™)

- Training Loss L is given by: L = 3(Lc + Lp).



ADDING FRAME-LEVEL SUPERVISION
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- We also experiment with frame-level state supervision.
+ Training Loss L is then: L = 3(Lc + Lp + Ls).



DATASET & MODEL DETAILS

Dataset:

- Switchboard corpus - 300 hrs of conversational speech data.
- Standard training/development/test split is used.

Model:

- Speech Encoder: 4-layer pyramidal bidirectional LSTM.
- Character Decoder: 1-layer unidirectional LSTM.
- Both have 256 hidden units.
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DEV RESULTS

Table 1: Character error rate (CER) and word error rate (WER) results on
development data.

Model Dev CER (in %) Dev WER (in %)
Enc-Dec (baseline) 14.6 26.0
Enc-Dec + PhoneCTC-3 14.0 253
Enc-Dec + PhoneDec-3 13.8 249
Enc-Dec + PhoneDec-4 14.5 25.9
Enc-Dec + State-2 13.6 241

Enc-Dec + PhoneDec-3 + State-2 13.4 24.1
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TEST RESULTS

Table 2: WER (%) on test data for different end-to-end models.

Model SWB CHE Full
Our models

Enc-Dec (baseline) 250 424 337

Enc-Dec + PhoneDec-3 + State-2  23.1  40.8 32.0
Lu et al. 2016

Enc-Dec 273 482 378

Enc-Dec (word) + 3-gram 258 46.0 36.0
Maas et al. 2015

CTC 380 561 47.1

Zweig et al. 2016
Iterated CTC 247 37.1 —
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HOw DOES MULTITASK LEARNING HELP ?
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Figure 1: Log-loss of training data (only L¢) for different model variations.
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- More generally, our ASR model can be extended to incorporate
higher-level supervision, such as semantic/syntactic labels.

- The idea of incorporating different types of supervision at
different levels is of broad interest (Hashimoto et al. 2016, Weiss
et al. 2017, Rao et al. 2017).



Questions?



