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Challenges in Parsing Speech

e Why not recognize speech (ASR) & then use a text parser?
e ASR transcriptions lack punctuation and can have errors

e Even assuming perfect transcriptions, need to deal with disfluencies
o Interjections: hmm, uh, um
o Speech repair: Why didn't he, why didn't she do it?
o Parentheticals: | mean, | don't need a car

e Why is conversational speech parsing important? Google Duplex!



Utilizing Acoustic-Prosodic Features for Parsing

e Prosodic boundaries found to co-occur with syntactic boundaries
(Schepman, 2000)

e Prosodic cues such as, pause length, pitch patterns, intensity etc
can be useful

o Pauses can act like commas

o Rising pitch at the end of sentence can indicate question
o Chicago cops arrest man (pause) with knife

Chicago cops arrest man with knife



Task

e Constituency parsing of conversational speech

e Assume transcription and word-level alignment of speech signal are

given

e Follow the setup of (Vinyals, 2015) to linearize parse tree:
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Linearized Parse Tree

(S (S (PRN (S (NP (PRP I) ) (VP (VBP
mean) ))) (INTJ (UH uh) ) (EDITED (NP
(PRP you) )) (NP (PRP you) ) (VP (VBP try)
(S (VP (TO to) )))))

Final POS-normalized linearized parse tree
(S (S (PRN (S (NP XX ) (VP XX ) ) ) (INTJ
XX ) (EDITED (NP XX ) ) (NP XX ) (VP XX
(8 (VPXX)))))




Encoder-Decoder Models
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Encoder Decoder

e Use attention-based encoder-decoder model for outputting
linearized parsed trees (Vinyals, 2015)
* Also experiment with location-aware attention models (Chorowski,

2015)




Acoustic-Prosodic Features

e Pause (p)

e Word duration (d)
¢ Fundamental frequency and Energy contours (f0/E)
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Proposed Model
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Experimental Setup

Switchboard-NXT corpus
Roughly 100K sentences

e Operate at sentence level - remove punctuation and lowercase
words (simulating speech recognition output)
Baselines:

o Text-only encoder-decoder model

o Berkeley parser: Latent-variable probabilistic context-free grammar
(PCFG) parser

Evaluation metric: PARSEVAL F-score



Text-only Models

1004
[ Berkeley

95{ @A Baseline Attention

I | ocation-aware Attention

F-score (in %)

Overall Disfluent Fluent

Dev set results for text-only model

e Refer to the best text-only model, location-aware attention model,
referred to as “Best Text” model from hereon.




Text + Acoustic-Prosodic feature Models
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Test set results

e Acoustic-Prosodic features improve parsing performance, in
particular on disfluent sentences




Ablation on Acoustic-Prosodic Features
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e A combination of all acoustic-prosodic features on top of text
features gives the best result



Effect of Sentence Length
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Acoustic-Prosodic features help more on longer sentences




Cherrypicked Example
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Performance Gain Categorization
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Relative error reduction by adding acoustlc—prosodlc features

e Only analyze disfluent sentences for this analysis
e Analysis done using Berkeley Parser Analyzer (Kummerfeld, 2012)




Conclusion

It's not what you said,
It'sthe way,ym said it.

e Acoustic-prosodic features are useful for constituency parsing

e Particularly useful for disfluent sentences and long sentences
e Future work:

o Removing the assumption of known sentence boundaries
o Cleaning up wrong transcriptions in Switchboard
o Extending this to dependency parsing



