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Challenges in Parsing Speech

• Why not recognize speech (ASR) & then use a text parser?

• ASR transcriptions lack punctuation and can have errors

• Even assuming perfect transcriptions, need to deal with disfluencies

◦ Interjections: hmm, uh, um
◦ Speech repair: Why didn’t he, why didn’t she do it?
◦ Parentheticals: I mean, I don’t need a car

• Why is conversational speech parsing important? Google Duplex!
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Utilizing Acoustic-Prosodic Features for Parsing

• Prosodic boundaries found to co-occur with syntactic boundaries
(Schepman, 2000)

• Prosodic cues such as, pause length, pitch patterns, intensity etc
can be useful
◦ Pauses can act like commas
◦ Rising pitch at the end of sentence can indicate question

• Chicago cops arrest man 〈pause〉 with knife
Chicago cops arrest man with knife



Task

• Constituency parsing of conversational speech

• Assume transcription and word-level alignment of speech signal are
given

• Follow the setup of (Vinyals, 2015) to linearize parse tree:
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Encoder-Decoder Models
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• Use attention-based encoder-decoder model for outputting
linearized parsed trees (Vinyals, 2015)

• Also experiment with location-aware attention models (Chorowski,
2015)



Acoustic-Prosodic Features

• Pause (p)
• Word duration (d)
• Fundamental frequency and Energy contours (f 0/E )
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Proposed Model
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Experimental Setup

• Switchboard-NXT corpus

• Roughly 100K sentences

• Operate at sentence level - remove punctuation and lowercase
words (simulating speech recognition output)

• Baselines:
◦ Text-only encoder-decoder model
◦ Berkeley parser: Latent-variable probabilistic context-free grammar

(PCFG) parser

• Evaluation metric: PARSEVAL F-score



Text-only Models
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Dev set results for text-only model

• Refer to the best text-only model, location-aware attention model,
referred to as “Best Text” model from hereon.



Text + Acoustic-Prosodic feature Models

Berkeley Best Text Best Text
+p + d + f 0/E

83

84

85

86

87

88

89

90

F
-s

co
re

(i
n

%
)

Test set results

• Acoustic-Prosodic features improve parsing performance, in
particular on disfluent sentences



Ablation on Acoustic-Prosodic Features
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• A combination of all acoustic-prosodic features on top of text
features gives the best result



Effect of Sentence Length
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Acoustic-Prosodic features help more on longer sentences



Cherrypicked Example

S

S

NP

NP

XX

the

XX

county

SBAR

S

EDITED

S

NP

XX

i

VP

XX

am

NP

XX

i

VP

XX

’m

PP

XX

in

NP

XX

the

XX

minorities

VP

XX

are

ADVP

XX

mostly

ADJP

XX

hispanic

S

S

NP

NP

XX

the

XX

county

SBAR

S

EDITED

S

NP

XX

i

VP

XX

am

NP

XX

i

VP

XX

’m

PP

XX

in

NP

XX

the

XX

minorities

VP

XX

are

ADVP

XX

mostly

ADJP

XX

hispanic

pause



Performance Gain Categorization
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Relative error reduction by adding acoustic-prosodic features

• Only analyze disfluent sentences for this analysis
• Analysis done using Berkeley Parser Analyzer (Kummerfeld, 2012)



Conclusion

• Acoustic-prosodic features are useful for constituency parsing

• Particularly useful for disfluent sentences and long sentences

• Future work:
◦ Removing the assumption of known sentence boundaries
◦ Cleaning up wrong transcriptions in Switchboard
◦ Extending this to dependency parsing


